

Copyrights and Trademarks

SAP, ABAP and SAPscript are registered trademarks of the SAP AG, Walldorf.
Microsoft Windows is he registered trademark of the Microsoft Corp.

All program names and terms additionally used in this manual are possibly also registered trademarks of certain
other manufacturers and must not be used commercially or in any other way. Errors and omissions excluded.

During the compilation of texts and illustrations herein, the greatest possible care was exercised. Errors,
however, cannot be entirely excluded. The stated data merely serve as product descriptions and must not be
regarded as warranted characteristics in the legal sense. Publishers and authors cannot take over any legal
accountability or any liability for erroneous statements and their implications

All rights reserved. No part of this manual must be reproduced or copied in any form whatsoever (print,
photocopy or the electronic storage and/or distribution) without the written consent of Suchy MIPS.

We at Suchy MIPS will always develop our products further in order to offer you the greatest possible comfort.
Therefore, we reserve possible deviations between this manual and the actual product and are asking for your
understanding should these occur.

Copyright © 1997 – 2014 by:
Suchy MIPS
Schichtlstraße 32A
81929 München

TABLE OF CONTENTS

1 INTRODUCTION 4

2 INSTALLATION 5

3 TEST PRINT WITH SAPSCRIPT 10

4 TEST PRINT WITH SMARTFORMS 11

5 TEST PRINT WITH ADOBEFORMS 12

6 IMPLEMENTATION OF A BARCODE OUTPUT WITH SAPSCRIPT 13

6.1 EMBEDDING BARCODES INTO AN SAPSCRIPT FORM 13
6.2 INSERTION OF A HUMAN READABLE TEXT (HRT) 18
6.3 INSERTION OF A ROTATED HUMAN READABLE TEXT (HRT) INTO AN SAPSCRIPT FORM 20

7 IMPLEMENTATION OF A BARCODE OUTPUT IN SMARTFORMS 27

7.1 EMBEDDING BARCODES INTO A SMARTFORMS FORM 27
7.1.1 DEFINITION OF VARIABLES 28
7.1.2 FORM SETUP FOR CREATING A BARCODE 29
7.2 DEFINITION OF THE BARCODE PROPERTIES 38
7.3 INSERTION OF A ROTATED HUMAN READABLE TEXT (HRT) WITHIN A SMARTFORMS FORM 38
7.3.1 TRUETYPE FONTS WITH ROTATED CHARACTERS 38

8 IMPLEMENTING A BARCODE OUTPUT WITH ADOBEFORMS 44

8.1 USING RBARC WITH ADOBEFORMS 44
8.2 FUNCTIONALITY OF CREATING BARCODES IN ADOBEFORMS WITH RBARC+ 44
8.3 EMBEDDING BARCODES INTO AN ADOBEFORMS FORM 44

9 THE BARCODE GENERATION 54

9.1 DEFINITION OF GLOBAL PARAMETERS FOR THE FLOW CONTROL 55
9.2 DEFINITION OF THE SINGLE BARCODE CHARACTERISTICS 58

10 MORE ABOUT BARCODES 61

10.1 LINEAR BARCODE TYPES 61
10.2 DEFINITION OF THE MODULE WIDTH 63
10.2.1 MODULE WIDTH VERSUS RESOLUTION. 63
10.3 DETERMINATION OF THE ALLOVER WIDTH OF THE BARCODE 63
10.4 ENCODABLE SYMBOLS AND INPUT FORMAT 64
10.4.1 CHARACTER SET OF THE BARCODE SYMBOLOGIES SUPPORTED BY RBARC+ 64

11 BARCODE SETTING – A SHORT SUMMARY 66

12 CHARACTERISTICS OF THE BARCODE 128FREE 67

13 THE BARCODE GS1-128 69

14 INDEX 71

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 4 of 74

1 Introduction

RBarc+ is an ABAP program, serving the ON-THE-FLY output of barcodes on documents that were
created on SAP systems. The program was designed in such a way that the generation of barcodes is
independent of the output type, no matter whether you want to print, fax, mail or archive the document
carrying the barcode or whether you want to change it into PDF. Therefore, in this manual, we will only
use the term “print” when real printing is actually involved. Otherwise, we will use the term “output”.

The output of barcodes that were created with RBarc+ can be carried out on any type of printer, provided
that a suitable SAP Device Type with graphic support is available. The connection type used does not
matter in this case, meaning that the output medium can be connected via any chosen SAP connection
type.

It is important for you to know that the implementation of a barcode output with RBarc+ does NOT mean
any change in the SAP standards. It is only necessary to carry out some adjustments in the SAPscript or
SmartForms or AdobeForms forms. The corresponding SAP output programs will undergo no changes.
Therefore, all RBarc+ programs are installed in the Z-range of the ABAP-Workbench, so that they will not
be involved in any possible system updates.

Below, you will again find a short summary of all important RBarc+ characteristics:

 The output of barcodes will always be true to the original, independent of the output type (printing,
faxing, mailing, archiving, and changing into PDF).

 For printers and faxes, no hardware upgrades are necessary.

 The output can be carried out on any type of printer or fax (including inkjet devices).

 The output can be carried out via any connection type.

 The SAP standards will not be changed.

 The installation of RBarc+ is carried out in the Z-range, so that it will not be involved in any system
 update. .

 The installation will only be carried out on the ABAP Application Server (no client adjustment is
 necessary).

 RBarc+ is operating independently of the operating system on which your SAP system was
 installed.

This manual is addressed to system administrators (installation) as well as to software engineers and
programmers (implementation of barcodes in forms). For the installation, we are assuming a basic
knowledge of the ABAP Workbench as well as a basic knowledge of ABAP and the utilized form-
composer (SAPscript or SmartForms or AdobeForms). Please understand that we cannot go into exact
detail here, such as for example, how to operate the ABAP Workbench. That would reach beyond the
scope of this manual. However, please feel free to contact our Support via info@suchymips.de, should
you have specific questions.

Note: User, who print documents including barcodes generated by RBarc+ must have following
permissions for the object S_BDS_DS:

ACTVT = 01,02,03 and 06
CLASSNAME = DEVC_STXD_BITMAP
CLASSTYPE = OT

The appropriate settings may be performed with the transaction "PFCG".
The User Role must include the transaction SE78 and the Authorisation for
BC-SRV-KPR-BDS (Technical Name S_BDS_DS).S_BDS_DS is assigned to class "Basis-Central
functions".
If the permission is missing, no barcode will appear on the output or generated barcodes will not be deleted
from the system.

mailto:info@suchymips.de

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 5 of 74

2 Installation

RBarc+ consists of interconnected ABAP programs of the type “Object Program” and „Include“. The
programs have to be installed once on the ABAP Application Server. After installation, the form routines
implemented in RBarc+ are fully available and can be called from SAPscript as well as from SmartForms
forms. If the Demo version of RBarc is already installed on your SAP test system, it is enough to
exchange the content of programs (reports) and includes. But the TrueType fonts (Page 6) and the test
material (Page 8) have to be newly installed.

Proceed as follows in order to install RBarc on your SAP systems. During installation, please pay regard
to and strictly observe the described installation sequence as well as the exact naming of the objects:

 Create a New Package:

 Start the transaction SE80 and create a new package (our suggestion: ZRBARC_12, in which the
delivered programs and test forms can be installed. Also, create a new order, so that later you will be
able to transfer your installation to the target system without any problems. Although for the package
you can choose any name beginning with „Z“ or „Y“, we will in the further course of this manual always
refer to the suggested name ZRBARC_12.

 Include ZRBARC_12:

 In the package ZRBARC, create an object of the type Include and name it ZRBARC_12.

 Copy the contents from the file ZRBARC_12.INC into the source code window of the newly created
object.

 Save and activate the program.

 Include ZSS_12 (for SAPscript support):

 In the package ZRBARC, create an object of the type Include and name it ZSS_12.

 Copy the contents from the file ZSS_12.INC into the source code window of the newly created object.

 Save and activate the program.

 Include ZSF_12 (for SmartForms support):

 In the package ZRBARC_12, create an object of the type Include and name it ZSF_12.

 Copy the contents from the file ZSF_12.INC into the source code window of the newly created object.

 Save and activate the program.

 Include ZAF_12 (for AdobeForms-Support):

 In the packet ZRBARC_12, create an object of the type Include and call it ZAF_12.

 Copy the contents of file ZAF_12.INC into the source code window of the newly created object.

 Save and activate the programme.

 Program ZSS_BC_SETTINGS12 (for SAPScript support):

 In the package ZRBARC, create an object of the type Program and name it ZSS_BC_SETTINGS12.

 Copy the contents from the file ZSS_BC_SETTINGS12.PRG into the source code window of the
newly object.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 6 of 74

 Save and activate the program.

 Program ZSF_BC_SETTINGS12 (for SmartForms support):

 In the package ZRBARC_12 create an object of the type Program and name it
ZSF_BC_SETTINGS12.

 Copy the contents from the file ZSF_BC_SETTINGS12.PRG into the source code window of the
newly created object.

 Save and activate the program.

 Programm ZAF_BC_SETTINGS (for AdobeForms-Support):

 In the packet ZRBARC_12, create an object of the type Programm and call it
ZAF_BC_SETTINGS12.

 Copy the contents of file ZAF_BC_SETTINGS.PRG into the source code window of the newly created
object

 Save and activate the programme.

 TrueType Fonts for a Vertical Output of the Human Readable Text (HRT)

Neither SAPscript nor SmartForms offer the possibility for an output of dynamic text vertically or rotated
by 180 degrees. Therefore, specific measures are necessary should you wish to rotate a barcode and at
the same time output the HRT fitting that barcode, as shows the example illustrated below.

Barcode rotated by 270 degrees

However, in order to offer you the opportunity for such an output, we are delivering 3 True Type fonts
together with RBarc+ 3, with the single fonts already rotated by 90, 270 or 180 degrees. When you install
these fonts on your SAP system and use them to format your HRT, you will achieve the desired result.
The exact procedure will be described in detail further on in this manual, in the chapters 5.3 (for
SAPscript) and 6.3 (for SmartForms).

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 7 of 74

 Together with RBarc, the following TrueType fonts are delivered: ZHRT90.TTF, ZHRT180.TTF and
ZHRT270.TTF. In order to install these fonts, please start the transaction SE73 and select Install
TrueType Font.

 Enter the relevant font name into the field Fontname (without the extension .TTF) and carry out the
program.

TrueType Installation for SAPscript/SmartForms

 Following the installation with transaction SE73, please check whether the font families ZHRT90,
ZHRT180 and ZHRT270 were actually created. The result should approximately present itself as
follows:

List of the installed Font Families

Note: Should you use the device type SAPWIN, printing via the SAP Client Program SAPLPD, you will
also have to install the fonts on the Microsoft Windows Clients, otherwise the output of rotated
HRT cannot be carried out correctly.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 8 of 74

In addition to the programs that are necessary for the output of barcodes, we are providing you with some
test resources which you can use to test the barcode output immediately after installation – that way you
will not have to carry out a previous barcode implementation in your forms. In order to install these
resources, please proceede as follows:

 Program ZSS_BC_PRINT (for printing an SAPscript form):

 In the package ZRBARC_12, create an object of the type Program and name it ZSS_BC_PRINT.

 Copy the contents from the file ZSS_BC_PRINT.PRG into the source code window of the newly
created object.

 Save and activate the program.

 SAPscript Form ZSS_BC_FORM:

 Start the ABAP Editor (transaction SE38) and then the SAP program RSTXSCRP.

 In the field Objectname, please enter the form name ZSS_BC_FORM and in the field Mode the value
IMPORT, and then activate the program. From the file selection menu, please select the file
ZSS_BC_FORM.FOR and click on <OK> in order to terminate the procedure.

 SmartForms Form ZSF_BC_FORM:

 Start the transaction SMARTFORMS.

 In the field Form, please enter the name of the form ZSF_BC_FORM.

 From the menu, select Tools / Upload. From the file selection menu, select the file
ZSF_BC_FORM.XML and click on <OK> in order to terminate the procedure.

 SmartForms Style ZSF_BC_STIL (full version only):

 Start the transaction SMARTFORMS.

 In the field Style, please enter the name of the style ZSF_BC_STIL.

 From the menu, select Tools / Upload Style. From the file selection menu, select the file
ZSF_BC_STIL.XML and click on <OK> in order to terminate the procedure.

 Programm ZAF_BC_PRINT (for printing AdobeForms Forms):

 In the packet ZRBARC_12, create an object if the type Programm and call it ZAF_BC_PRINT.

 Copy the contents of the file ZAF_BC_PRINT.PRG into the source code window of the newly created
object.

 Save and activate the programme.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 9 of 74

 AdobeForms Interface ZAF_BC_INTERFACE:

 Start transaction SFP

 In the field Interface enter the name of the interface ZAF_BC_INTERFACE.

 Select the menu item Tool / Upload Formobject. From the file menu select file
ZAF_BC_INTERFACE.XML and click on <OK> to end the process.

 AdobeForms Form ZAF_BC_FORM:

 Start transaction SFP

 In the field Form enter the name of the form ZAF_BC_FORM.

 Select the menu item Tool / Upload Formobject. From the file menu select file ZAF_BC_FORM.XML
and click on <OK> to end the process.

Should you have closely followed all the steps described in Chapter 2, the installation is
now completed. You are now able to turn your attention to the implementation of
barcodes in your forms. In this context, please read the following chapters.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 10 of 74

3 Test Print with SAPscript

 Start the ABAP Editor with transaction SE38 and activate the program ZSS_BC_PRINT.

The program ZSS_BC_PRINT prints the SAPscript form included in the delivery: ZSS_BC_FORM. As
the barcode output with RBarc is device-independent, you do not have to actually print the form, you can
just view the results on your screen by selecting Print Preview from your printer dialog. The result should
approximately present itself as follows:

Print Preview of the Demo SAPscript Form ZSS_BC_FORM

The fact that you can see the barcodes on the form output means the installation was successful. Now,
you can begin using RBarc+ to implement barcodes in your own SAPscript forms.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 11 of 74

4 Test Print with SmartForms

 Start the transaction SMARTFORMS.

 In the field Form, enter the name of the form ZSF_BC_FORM and click on the symbol
or select SmartForms / Test from the menu.

As the barcode output with RBarc is device-independent, you do not have to actually print the form, you
can just view the results on your screen by selecting Print Preview from your printer dialog. The result
should approximately present itself as follows:

Print Preview of the Demo SAPscript Form ZSS_BC_FORM

The fact that you can see the barcodes on the form output means the installation was successful. Now,
you can begin using RBarc+ to implement barcodes in your own SmartForms forms.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 12 of 74

5 Test Print with AdobeForms

 Start the ABAP Editor with transaction SE38 and run the program ZAF_BC_PRINT.

The program ZAF_BC_PRINT prints the delivered AdobeForms-form ZAF_BC_FORM. As the barcode
output with RBarc+ is device-independent, there is no need to print the form, you can view the result on
the screen by selecting Print View from the printer dialog. The result should more or less look as follows:

Print preview of the demo Demo AdobeForms form ZAF_BC_FORM

If you can view the barcodes on the form output, that means the installation was successful. You can now
begin to implement barcodes in your own AdobeForms-Forms with RBarc+.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 13 of 74

6 Implementation of a Barcode Output with SAPscript

6.1 Embedding Barcodes into an SAPscript Form

Any amount of barcodes can be embedded into an SAPscript form. Although it is advisable to define a
separate window for each barcode, a barcode can also be embedded into any existing window. In order
to simplify matters, our description concentrates on the embedding of a barcode into an existing
SAPscript window. The barcode embedding is solely carried out via so-called command-instructions so
that the form layout cannot change (the inserted barcode does not use any of its own space). Existing
printing programs for an SAPscript form will NOT be affected. The adjustments are only concerning the
form itself (that way, the RBarc+ solution is SAP-updatable). To make sure that the form adjustments
remain as marginal as possible, only the most necessary definitions are carried out. Among these is the
information „what needs to be encoded“? and „where should the barcode be positioned“? All other
barcode properties, such as symbology, width, height, etc. are conducted in the separate ABAP
program ZSS_BC_SETTINGS12.

The procedure logics are always the same and conform to the following principle:

 One-time definition of the barcode properties (symbology, height, width, etc.) in a separate form
routine in the ABAP program ZSS_BC_SETTINGS12.

 Definition of the variable(s) in an SAPscript form to be encoded as a barcode.

 Determination of a barcode identification (each barcode within a form has to be clearly
identifiable).

 Calling up the form routine GEN_BARCODE in program ZSS_BC_SETTINGS12 and transfer of
the parameters (among which are chiefly the data to be encoded and the barcode identification).

 Transfer of the return parameters coming back from RBarc+ (chiefly the dynamic name of the
barcode graphic to be embedded).

 Dynamic embedding of the barcode graphic into the form.

 Deletion of the previously created barcode graphic from the system.

We will later hear more about the barcode properties, such as symbology, height, width, etc., as this
part is identical for SAPscript and SmartForms applications. In the following, we will present a listing of
an SAPscript form with the corresponding explanations, which should enable you to use RBarc+ to
embed your own barcodes into SAPscript forms.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 14 of 74

 Listing of the Barcode Implementation in an SAPscript Window

As mentioned before, all lines are command lines that do not alter the form layout, as the barcode graphic
does not take up any of its own space. An explanation concerning these listings can be found on the
following pages.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 15 of 74

Explanation of the Single Lines:

Line 1:

DEFINE &ENCODING& = &LABEL_DATA-EXIDV&

Here, the value of variable EXIDV from table LABEL_DATA, (which, here, belongs to the setup logic of
the SAPscript form) is allocated to variable ENCODING. Variable ENCODING transfers the value to be
encoded to RBac+. The name „ENCODING“, therefore, must not be changed. Only one ENCODING
variable per RBarc+ callup can be transferred. If necessary, however, several different variables from the
form procedure logic can be written into one ENCODING variable at the same time. In that case, a colon
has to be put before the equal sign and the variables have to be put in inverted commas, e.g.:

DEFINE &ENCODING& := '&LABEL_DATA-EXIDV&&LABEL_DATA-EXIDT&'

Note: The length of variable ENCODING must not exceed altogether 70 characters. .

Line 2:

DEFINE &BARC_IDENT& = 'BARCODE01'

Here, a barcode identification is allocated that is transferred to RBarc+ via variable BARC_IDENT. The
maximum length for this variable is 10 characters. Each barcode in the form has to possess its own,
clear identification. Therefore, we recommend using a counter as a means of discrimination, like „01“ in
the above example.

Note: The barcode identification has to correspond to the name of the form routine in program
ZSS_BC_SETTINGS12, in which the barcode properties are defined. Where required, you will
perhaps have to create your own form routine for a new barcode in program
ZSS_BC_SETTINGS12. Our delivery comprises 4 pre-defined form routines in program
ZSS_BC_SETTINGS12. Those are BARCODE01, BARCODE02, BARCODE03 and
BARCODE04. The barcode parameters defined therein can be changed at any time. Chapter
7 will offer you a detailed description.

Line 3:

DEFINE &XPOS& = '40.00'.

With this definition, the barcode is moved to the right by 40 units. The measuring unit for the value
corresponds to that of barcode measurements, as they are determined in program
ZSS_BC_SETTINGS12 in the relevant form routine in which barcode properties were defined (parameter
UNIT). The standard value is „mm“.

Note: With parameter XPOS, a barcode can only be moved to the right. Moving it to the left (i.e.
beyond the left window frame) is not possible.

Note: It is not possible to move a barcode with the similar parameter YPOS up or down, relative to the
current cursor position. In principle, entering YPOS parameters is possible. This, however,
would ultimately lead to the effect that the barcode appears not in the current window but
always at the same height of the physical page.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 16 of 74

Line 4:

DEFINE &GRAPH_TYPE& = 'OTF'.

With this definition, the kind of graphic type is determined, that is created by RBarc+. As a standard, OTF
is created (if possible, this parameter should not be changed). In principle, it is possible to create a so-
called BMP-Bitmap (DEFINE &GRAPH_TYPE& = 'BMP'). As this cannot be moved to the right relative to
the window, this graphic type is almost never used under SAPscript.

Lines 5-9:

PERFORM GEN_BARCODE IN PROGRAM ZSS_BC_SETTINGS12.
 USING &ENCODING&
 USING &BARC_IDENT&
 USING &GRAPH_TYPE&
 USING &XPOS&

Calling up the form routine GEN_BARCODE in program ZSS_BC_SETTINGS12 and transfer of the
parameters ENCODING, BARC_IDENT, GRAPH_TYPE and XPOS.

Note: In principle, it is possible to use a separate ABAP program for each form with the corresponding

barcode properties defined therein. In that case, please copy program ZSS_BC_SETTINGS12
into a different program and then call this up from the SAPscript form. When you do this, please
make sue that the names of the variables are not changed, as otherwise the program could not
function properly.

Lines 10-13:

CHANGING &BARC_NAME&
CHANGING &USED_LINES&
CHANGING &ENCODING_RETURN&
CHANGING &CHECKSUM&

In the rows 10-13, variables for the return values from Rbarc+ are defined. These names must not be
changed. Should you require these variables for other purposes, it is recommended to write these into
different variables that you defined yourself.

BARC_NAME – name of the graphic created by RBarc+ with the barcode image.
 USED_LINES – defines how many lines the barcode uses (at 1/6th of an inch).
 ENCODING_RETURN – defines everything that was actually encoded.
 CHECKSUM – the check digit calculated by RBarc (if required).

Note: The returned value for ENCODING_RETURN can sometimes deviate from the transferred value

for ENCODING, e.g. when certain options, such as the deletion of leading zeros, were pre-set in
program ZSS_BC_SETTINGS12.

.

Line 14:

ENDPERFORM

End of the PERFORM command initiated in line 5.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 17 of 74

Line 15:

INCLUDE &BARC_NAME& OBJECT TEXT ID ADRS LANGUAGE &SY-LANGU&

With this command, the barcode graphic created by RBarc+ will be embedded into the form dynamically,
i.e. during runtime. This command only applies to OTF graphics (recommended standard).

Line 16:

BITMAP &BARC_NAME& OBJECT GRAPHICS ID BMAP TYPE BMON DPI 150

This command is commented out in the form and, here, serves only documentary purposes. Should you
have decided to use the graphic type BMP (by entering DEFINE &GRAPH_TYPE& = 'BMP' in line 4),
then the graphic has to be dynamically embedded with this command.

Note: In contrast to OTF-graphics, with BMP-graphics the resolution has to be defined in DPI. This

resolution value has to correspond strictly to the one defined in program
ZSS_BC_SETTINGS12 for the barcode to be inserted. Should that not be the case, a different
barcode size than expected will be displayed.

Note: A graphic of the type BMP, can – in contrast to an OTF-graphic – not be moved horizontally

within the window. The parameter XPOS remains without effect. For reasons of compatibility
with earlier RBarc+ versions that had no OTF-formats, the BMP format is supported.

Lines 17-20:

PERFORM DEL_BARC IN PROGRAM ZSS_BC_SETTINGS12
 USING &BARC_NAME&
 USING &GRAPH_TYPE&
ENDPERFORM

With these lines, the barcode that was previously created is deleted from the system.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 18 of 74

6.2 Insertion of a Human Readable Text (HRT)

For technical reasons, the HRT cannot be created together with the barcode graphic. Should an HRT be
required, it therefore has to be separately output in the form. For these cases, there are two possibilities
on offer:

 Define the HRT in the same window as the barcode.

 Define the HRT in its own, separate window.

To start with, we will follow the first approach:

For the HRT, the value of variable ENCODING_RETURN should be used. Should the check digit be
output together with the HRT, the variables have to be bundled, e.g. in an SAPscript command line with
the following contents:

DEFINE &HRT& := '&ENCODING_RETURN&&CHECKSUM&'

Should you wish to insert the HRT into the same window as the barcode, you have to keep in mind that
the barcode does not take up any of its own space. Therefore, you will have to insert the barcode a few
lines further down, after the include command for the barcode graphic, in order to position the HRT below
the barcode. The horizontal position of the HRT, you can manipulate by using spaces or tab stops before
variable &HRT&:

Barcode Implementation in the SAPscript Window with HRT

In order to exactly arrive at the position under the barcode, spaces were inserted under the command
lines for the barcode implementation (2). Only then, the HRT can follow (3). As the barcode was moved to
the right by 40 mm (1), a tab stop was defined for paragraph „B1“ on position 42mm and a tabulator was
set before variable HRT (3).

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 19 of 74

It is not always possible to reach the exact vertical position for the HRT by using standard lines (1/6 inch),
you will probably have to define an additional paragraph format with its separately defined line spacing. In
the above example, a paragraph „HA” was inserted (4), defined with a line spacing of 1/3 LN.

Tabulator Definition for the Paragraph „B1“.

Definition of the Line Spacing 0.3 LN for the Paragraph HA.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 20 of 74

The result will present itself approximately as follows:

By using the methods described above, it is possible to output the HRT at any desired position.

6.3 Insertion of a Rotated Human Readable Text (HRT) into an SAPscript Form

As already mentioned, neither SAPscript nor SmartForms include the possibility to rotate a dynamic text.
Therefore, we have developed three special fonts for you with the characters already rotated by 90, 180
or 270 degrees. If you have carried out all the single installation steps, these fonts should already be
installed on your SAP-System. If that is not the case, please return to the installation instructions in
Chapter 3 and install the TrueType fonts ZHRT90, ZHRT180 and ZHRT270, which were included in the
delivery.

Example HRT90:

1 2 3 4 5

Example HRT180

12345

Example HRT270

1 2 3 4 5

As the character feed is carried out in horizontal direction in spite of the fonts having been rotated, each
character of the HRT has to be output in a separate line for a vertically oriented text:

1

2

3

4

5

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 21 of 74

As you will certainly already have noticed, in some cases the sequence of the figures is shown reversely
to the original character sequence 12345. Therefore, if you wish to output text that was rotated by 90 or
180 degrees, you will have to output the characters of the HRT in reversed order. In this case, SAPscript
offers the corresponding possibilities described in the following:
Let us assume that the HRT is 10 characters long and was saved in variable HRT1. Then, in case of a
text rotated by 90 or 180 – seen from above or from the left – first the tenth, then the ninth, then the
eighth, etc. character has to be output. You can achieve this using the following SAPscript encoding:

Example HRT1 = ‘0123456789‘

Command Lines for 90 degrees Result with a 90-degree rotation

&HRT1+9(1)& 9

&HRT1+8(1)& 8

&HRT1+7(1)& 7

&HRT1+6(1)& 6

&HRT1+5(1)& 6

&HRT1+4(1)& 5

&HRT1+3(1)& 4

&HRT1+2(1)& 3

&HRT1+1(1)& 2

&HRT1(1)& 1

Command Line

&HRT1+9(1)&&HRT1+8(1)&&HRT1+7(1)&&HRT1+6(1)&&HRT1+5(1)&&HRT1+4(1)&&HRT1+3(1)&&HRT1+2(1)&HRT1+1(1)&&HRT1(1)&

Result with a 180-degree rotation

9876543210

In case of a 270-degree rotation, the command sequence has to be in reverse to the 90-degree rotation:

Command Lines for 120 degrees Result with a 270-degree rotation

&HRT1+(1)& 0

&HRT1+1(1)& 1

&HRT1+2(1)& 2

&HRT1+3(1)& 3

&HRT1+4(1)& 4

&HRT1+5(1)& 5

&HRT1+6(1)& 6

&HRT1+7(1)& 7

&HRT1+8(1)& 8

&HRT1+9(1)& 9

Note: Should it, in case of a 90 or 270-degree rotation, be necessary to set the characters closer or

wider apart, you will have to define a corresponding paragraph in the SAPscript form and
allocate this to the single lines of the HRT output in the command column.

As it is often difficult to lodge this coding inside an existing SAPscript window without tampering with the
layout, we recommend to use a separate window for the HRT. That has the additional advantage that the
correct positioning of the HRT can be comfortably achieved via the window position.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 22 of 74

The following example of an SAPscript form with a barcode rotated by 90 degrees and with HRT is to
help you carry out your own implementations. On display is a barcode whose HRT additionally contains
the check digit calculated by RBarc+ during runtime.

The example form consists of two windows: MAIN and HRT.

In the window MAIN, the barcode was defined, as described in Chapter 5.1.:

Barcode Implementation in the SAPscript Window MAIN

As we do not wish to output the HRT immediately, the standard return variable &ENCODING_RETURN&
was buffered in &HRT1& (1). That way, it is secured that the value remains unchanged, even if further
barcodes are added to the form. The similar is true for variable &CHECKSUM&, that contains the current
check digit (2). This was buffered in variable &CHK1&.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 23 of 74

Window Definition for the Human Readable Text (HRT)

To make the barcode rotate by 90 degrees, the parameter ROT in program ZSS_BC_SETTINGS12 was
defined accordingly:

Definition of the Parameter ROT = 90 in the ABAP Program ZSS_BC_SETTINGS12

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 24 of 74

As the HRT is to be rotated by 90 degrees, paragraph HR was defined in the SAPscript form. In the
paragraph definition, it was determined that the line spacing for this paragraph is to be 1.5 LN.
Additionally, it was determined that the font type to be used is ZHRT90 with a height of 14 Pt.

 Definition of the Paragraph HRT

The window was positioned in such a way that the HRT will appear directly right to the barcode.

Definition of the HRT Window’s Page Position

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 25 of 74

In the HRT window, the HRT is output character by character (from back to front) per line (variable
HRT1). Each line is formatted with paragraph HR.

Note: In the SAP pint preview, the result does not appear to be correct in case of rotated HRT.
Reason for this is the fact that – for the preview – not the stated True Type fonts but their
substitutes are used. However, as soon as you create the print form or a PDF-form, the HRT
will be shown it its correctly rotated form.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 26 of 74

 Result of the SAP-Print Preview Real Print Result

Note: By using the above procedure, you can also create rotated barcodes with an embedded or
semi-embedded HRT. For this, define the parameters MARGIN and OFFSET in program
ZSS_BC_SETTINGS12 for the corresponding barcode (this will create a white indentation
alongside the long barcode margin) and then position the HRT accordingly.

Rotated Barcode with semi-embedded HRT

.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 27 of 74

7 Implementation of a Barcode Output in SmartForms

7.1 Embedding Barcodes into a SmartForms Form

Any amount of barcodes can be inserted into one SmartForms form. As here we are dealing with nodes
of the type program lines and graphics, the barcode can be inserted anywhere you want: into an
existing window, into a separate window or for example into a template or a table. Existing print programs
for a SmartForms form will NOT be changed. The adjustments only concern the form itself (that way, the
RBarc+ solution is SAP-updatable). In order to keep the number of adjustments within the form as low as
possible, only the absolutely necessary adjustments are carried out in the SmartForms form – similar to
an SAPscript form. Among these is the information about „what is to be encoded“? and „where should
the barcode be positioned“? All other barcode properties, such as symbology, width, height, etc. are
conducted in the separate ABAP program ZSF_BC_SETTINGS12.

The procedure logics are always the same and conform to the following principle:

 A one-time definition of the barcode properties (symbology, height, width, etc.) in a separate
form routine within the ABAP program ZSF_BC_SETTINGS12.

 Definition of the variable(s) in the SmartForms form to be encoded as barcodes.

 Determination of a barcode identification (each barcode within a form has to be clearly
identifiable).

 Calling up the form routine GEN_BARCODE in program ZSF_BC_SETTINGS12 and transfer of
the parameters (among which are primarily the data and the barcode identification to be
encoded). This will be carried out via a separate program node to be created.

 Taking over the return parameters coming back from RBarc+ (primarily the dynamically created
name of the barcode graphic to be embedded).

 Dynamic embedding of the barcode graphic into the form via a graphic node.

 Deleting the previously created barcode graphic from the system via another programming node.

We will later hear more about the barcode properties, such as symbology, height, width, etc., as that
part is identical for both SAPscript and SmartForms applications.

On the following pages, we will present a screenshot – together with a corresponding explanation – of a
SmartForms form with an embedded barcode.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 28 of 74

7.1.1 Definition of Variables

As a rule, changing data originating from processes within a productive environment will get encoded
(e.g. delivery notes). These data are received by tables or structures that were defined in the form
interface. One example for such a definition in the form interface could for instance be the structure
LABEL_DATA, taking reference to the table VWAHN. In our example, we will encode the field VBELN
from the structure LABEL_DATA as a barcode.

Example of a Form Interface Definition

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 29 of 74

7.1.2 Form Setup for Creating a Barcode

The following image shows you the form structure together with the nodes necessary for the barcode
output. In this case, all nodes were inserted into the window MAIN. However, as already mentioned, you
can use and choose any type of window you like.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 30 of 74

Node 1

Program nodes: In this node, the variable is determined which is to be encoded as a barcode and the
form routine GEN_BARCODE in program ZSF_BC_SETTINGS12 is called up.

Program Listing of the Barcode Implementation

The structure LABEL_DATA (1) was defined as the input parameter. This is necessary for the variable
to be „seen“ from this node.

As output parameters, the variables BARC_NAME, CHECKSUM and ENCODING_RETURN (2) are
defined (the latter cannot be seen on this screenshot). This is important, as these variables returned by
program ZSF_BC_SETTINGS12 are needed in the forthcoming form nodes. In order to render these
variables viewable all over, they have to be defined in the global definitions of the SmartForms form as
follows:

BARC_NAME TYPE STRING

CHECKSUM TYPE C

ENCODING_RETURN TYPE STRING

Global Definitions in the SmartForms Form

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 31 of 74

Program Listing:

Lines 1 and 2:

In the DATA command, the variables BARC_IDENT(10) and ENCODING are defined.

Line 4

BARC_IDENT = 'BARCODE03'

Here, a barcode identification is allocated that is transferred to RBarc+ by variable BARC_IDENT. The
maximum length for this variable is 10 characters. Each barcode in the form has to carry a distinct
identification, therefore, it is advisable to use a counter as a means of discrimination, as shown in the
above example ‚03‘.

Note: The barcode identification has to correspond to the name of the form routine in program
ZSF_BC_SETTINGS12, in which the barcode properties are defined. If necessary, you will
have to create your own form routine for a new barcode in program ZSF_BC_SETTINGS12.
On delivery, 4 form routines are pre-defined in program ZSF_BC_SETTINGS12:
BARCODE01, BARCODE02, BARCODE03 and BARCODE04. The barcode parameters
defined therein can be changed at any time.

Line 6

ENCODING = LABEL_DATA-VBELN

In this line, the variable ENCODING is allocated with the value of the field VBELN from the structure
LABEL_DATA. Please keep in mind that, as a rule, barcodes can only encode data of the type TEXT, so
that figures, especially those containing a dot or a comma, have to be converted to TEXT beforehand.
You will achieve this by writing the relevant variables of the types Integer or “F” in one text variable.

Lines 8 – 9

PERFORM GEN_BARCODE IN PROGRAM ZSF_BC_SETTINGS12
 USING encoding barc_ident

Calling up the form routine GEN_BARCODE in program ZSF_BC_SETTINGS12 and transfer of the
parameters ENCODING and BARC_IDENT.

Note: On principle, it is possible to use a separate ABAP program for each form together with the
barcode properties defined therein. In this case, please copy program ZSF_BC_SETTINGS12
into a different program and call this up in the SmartForms form. However, you will have to
make sure not to change the name of the variable, as otherwise the program could not
function properly.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 32 of 74

Line 10

CHANGING barc_name checksum encoding_return.

In Line 10, the variables for the return values from Rbarc+ are defined. These names must not be
changed. Should you need the values of these variables for a different purpose, it is advisable to write
these into separate variables which you have defined yourself.

BARC_NAME – name of the graphic created by RBarc+ with barcode image
CHECKSUM – the check digit calculated by Rbarc+ (if required)
ENCODING_RETURN – states what was actually encoded

Note: The returned value for ENCODING_RETURN can sometimes deviate from the transferred value

for ENCODING, for example when certain options, such as the deletion of leading zeros, were
set in program ZSF_BC_SETTINGS12.

.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 33 of 74

Node 2

Graphic Node. In this node, the barcode graphic created by RBarc+ is inserted dynamically. Therefore,
in the field Name you will find no defined name but the variable BARC_NAME (1). This variable contains
the name of the barcode graphic stored in the system created during runtime. This name is disclosed via
the output parameters of the previous program node. To make everything work properly, the variable
BARC_NAME has to be stated as a TYPE STRING in the Global Definitions of the SmartForms form.

The field Object has to be filled with the value GRAPHICS and the field ID has to be filled with the value
BMAP.

In the field Resolution, the actual resolution has to be stated, that was used to create the graphic.

Note: The resolution used to create the barcode graphic is determined in program

ZSF_BC_SETTINGS12 in parameter RES. Should the statements in the program and those in
the form not be congruent, the result will not correspond to the desired expectations: the graphic
shown will either be too large or too small.

Note: For each barcode, a separate resolution can be entered – according to your requirements. With
RBarc+, any chosen resolutions can be defined. Should you wish to print documents with
barcodes, you should make sure that the output device does really support the graphic
resolution you have chosen. If that is not the case, the barcode graphic will be printed in an
incorrect size. Well-established laser printers support the following graphic resolutions: 75dpi,
150dpi, 300dpi and 600dpi.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 34 of 74

Node 3

 Text Node. In this node, the Human Readable Text (HRT) is inserted.

&ENCODING_RETURN&&CHECKSUM&

As HRT, the variable ENCODING_RETURN, immediately followed by the output of CHECKSUM. The
horizontal position of the HRT can be achieved by using blank spaces or tab stops.

As a rule, the HRT will appear in the line underneath the barcode graphic:

Sometimes, however, the necessity arises to „embed“ the HRT into the barcode. For this case, you will
have to define a margin (Margin) for the barcode in program ZSF_BC_SETTINGS12 and to create a
SmartForms style (or expand an existing style). There, you will have to define a paragraph with a line
spacing of 0 or for example 0.1 mm – according to your requirements. The style has to be allocated to the
text node and the defined paragraph has to be allocated to the HRT:

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 35 of 74

Example of a SmartForms Style with Paragraph B1 and Line Spacing 0 MM

Human Readable Text with allocated Paragraph „B1“

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 36 of 74

The result should approximately present itself as follows:

Note: In most cases, the value of the variable ENCODING_RETURN corresponds to the variable
ENCODING. As RBarc+, however, offers additional possibilities to manipulate the input value
(ENCODING) (e.g., leading blank spaces or zeros can be removed), it is possible that the
barcode encodes a different value as stated with ENCODING. For this reason, the variable
ENCODING_RETURN RBarc+ will return the value actually encoded. Example: ENDODING =
00012345. As in program ZSF_BC_SETTINGS12, the suppression of leading zeros was set,
only the figures 12345 will actually be encoded. The return parameter ENCODING_RETURN
will now also receive the value 12345 meant to be used as HRT.

Note: On principle, it is possible to output the HRT in a separate window, entirely detached from the
barcode. This carries the advantage that no special paragraph formats have to be defined, that
the desired position can in fact be reached via positioning the window. Should, in the same
form, several different barcodes have to be implemented, you should buffer the original return
values in their own variables to make sure that those are not overwritten by the next RBarc+
callup and remain unchanged throughout the entire runtime. For example, for three different
barcodes, you define HRT1, HRT2 and HRT3 and write the value of ENCODING_RETURN
right into the first program node of each barcode and into the relevant HRTx variable. This way,
each HRT will remain unchanged for the entire form operation and can be employed at any
time.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 37 of 74

Node 4

Program Node. In this node, the previously created barcode is deleted. Of course, the barcode must only
be deleted from the system after it had already been inserted into the form. Therefore, please make sure
that this node comes after the graphic node within the program flow logic.

Please define BARC_NAME as your Input Parameter (1).

Program Listing

Lines 1 - 2

perform del_barc_bmp in program ZSF_BC_SETTINGS12
using barc_name.

This command calls up the form routine del_barc_bmp from program ZSF_BC_SETTINGS12, which
deletes the previously created barcode with the name BARC_NAME from the system.

Note: Should you wish to output several barcodes in one form and should you have defined the HRT
in separate windows, you will certainly have buffered the value of the HRT in its own variable
(e.g. HRT1). In this case of course, you will have to enter that variable as an input parameter (1)
instead of BARC_NAME, and as a USING-Parameter in program line 2.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 38 of 74

7.2 Definition of the Barcode Properties

As already mentioned in previous chapters, the barcode properties are defined in a separate ABAP
program. These definitions are identical for both SAPscript and SmartForms. An SAPscript, however,
requires a different interface for any data transfer than SmartForms does, for SAPscript the program
ZSS_BC_SETTINGS12 is used; for SmartForms, the program is ZSF_BC_SETTINGS12. Please make
sure that you are really using the right program. In the following, we will only refer to those form routines
that are equal for both programs.

7.3 Insertion of a Rotated Human Readable Text (HRT) within a SmartForms Form

Similar to SAPscript, SmartForms does not offer the possibility to output rotated dynamic text. For those
of you who are only interested in SmartForms and have skipped Chapter 5.3, we will repeat once again
the information contained in Chapter 5.3. Should you, however, have already read Chapter 5.3., you can
now skip Chapter 6.2 and carry on with the ensuing chapters.

7.3.1 TrueType Fonts with Rotated Characters

In order to enable printing of rotated HRT, we have developed 3 special font types, with the characters
already rotated by 90, 180 or 270 degrees. Should you have correctly followed all the installation steps,
these fonts should already be installed on your SAP system. Should that not be the case, please return to
the installation instructions and install the TrueType fonts ZHRT90, ZHRT180 and ZHRT270 that were
part of the delivery.

Example HRT90:

1 2 3 4 5

Example HRT180

12345

Example HRT270

1 2 3 4 5

As the character feed is still carried out by the system in horizontal direction despite the font rotation, for a
vertically oriented text, each character from the HRT has to be output in a separate line:

1

2

3

4

5
As you will have certainly already noticed, the sequence of the figures is inverted compared with the
original character sequence 12345. Therefore, in case of text output that was rotated by 90 or 180
degrees, you will have to output the HRT characters in the reversed sequence. For this, SAPscript offers
the appropriate possibilities described in the following:
Let us assume that the HRT has a length of 10 characters as was stored in variable HRT1. Then, in case
of a text rotated 90 or 180 Grad degrees – seen from above or from the left – first the tenth, then the
ninth, then the eighth, etc. character has to be printed. You can achieve this with the following encoding:

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 39 of 74

(Example HRT1 = ‘0123456789‘)

Command Lines for 90 degrees Result with a 90-degree rotation

&HRT1+9(1)& 9

&HRT1+8(1)& 8

&HRT1+7(1)& 7

&HRT1+6(1)& 6

&HRT1+5(1)& 6

&HRT1+4(1)& 5

&HRT1+3(1)& 4

&HRT1+2(1)& 3

&HRT1+1(1)& 2

&HRT1(1)& 1

Command Line

&HRT1+9(1)&&HRT1+8(1)&&HRT1+7(1)&&HRT1+6(1)&&HRT1+5(1)&&HRT1+4(1)&&HRT1+3(1)&&HRT1+2(1)&HRT1+1(1)&&HRT1(1)&

Result with a 180-degree rotation

9876543210

In case of a 270-degree rotation, the command sequence has to be in reverse of the 90-degree rotation.

Command Lines for 270 degrees Result with a 270-degree rotation

&HRT1+(1)& 0

&HRT1+1(1)& 1

&HRT1+2(1)& 2

&HRT1+3(1)& 3

&HRT1+4(1)& 4

&HRT1+5(1)& 5

&HRT1+6(1)& 6

&HRT1+7(1)& 7

&HRT1+8(1)& 8

&HRT1+9(1)& 9

Note: Should it, in case of a 90 or 270-degree rotation, be necessary to set the single characters
closer or further apart, you will have to define a relevant paragraph in the suitable style and use
this to format all paragraphs of the HRT characters.

As it is often difficult to pack all this encoding into an existing SmartForms window without interfering with
the layout, we suggest using a separate window for the HRT. This has the additional advantage that
positioning the HRT can easily be carried out via the window position.

The following example of a SmartForms form with a barcode rotated by 90 degrees and with HRT is
meant to help you carry out your own implementations. A barcode is on display whose HRT additionally
contains the check digit calculated by RBarc+ during runtime.

The example-form consists of three windows: MAIN, BARCODE and HRT, with MAIN carrying no
significance for this example.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 40 of 74

SmartForms Form with a rotated Barcode and Human Readable Text

In the window BARCODE, the barcode was defined as described in Chapter 6.1.
The window HRT was positioned in such a way that the HRT appears directly to the right of the barcode.

As we do not wish to output the HRT immediately, the standard return variable ENCODING_RETURN was
buffered in variable HRT1 (1). Thus, it is ascertained that the value remains unchanged, even if further
barcodes should be created in the same form. The similar is true for variable CHECKSUM containing the
current check digit (2) which is buffered in variable CHK1.

For the barcode to rotate by 90 degrees, parameter ROT in program ZSF_BC_SETTINGS12 was defined
accordingly:

Definition of the Parameter ROT = 90 Degrees in the ABAP Program ZSF_BC_SETTINGS12

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 41 of 74

As the HRT is to be rotated by 90 degrees, a style with the name ZBARCROT was created. There, the
paragraphs R1 – for 90 degree, R2 for 180 degree and R3 for 270 degree rotations were created. The
paragraphs were allocated to the relevant TrueType fonts ZHRT90, ZHRT180 or ZHRT270 with a size of
14 Pt. and a line spacing of 1.5 LN.

 Definition des Stiles ZBARCROT

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 42 of 74

In the window HRT, the text node is allocated to the style ZBARCROT. In the text node, the HRT
(variable HRT1) is output character after character (from back to front) per line. Each line was formatted
with paragraph R1.

Note: The result in case of rotated HRT in the SAP print preview appears to be incorrect. Reason for
this is the fact that for the print preview not the stated True Type fonts but their substitutes are
used. As soon as you print the form or create for example a PDF-document, the HRT will be on
display in its correctly rotated form.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 43 of 74

 Result of the SAP-Print Preview Real Printing Result

Note: Using the above-described procedure, you can also design rotated barcodes with embedded or
semi-embedded HRT. For this, please define the parameters MARGIN and OFFSET in program
ZSF_BC_SETTINGS12 for the relevant barcode (that will create a white indentation alongside
the long barcode margin) and position the HRT accordingly.

Rotated Barcode with Semi-Embedded Human Readable Text

.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 44 of 74

8 Implementing a Barcode Output with AdobeForms

8.1 Using RBARC with AdobeForms

In the standard Adobe Life Cycle Designer SAP supplies the usual barcodes. In which situations does it
still make sense to use RBarc+?

 The desired barcode type is not available in AdobeForms.

In its object library, Adobe Forms does not offer all barcodes. Barcodes, that are not available in
AdobeForms, can be created with RBarc+.

 AdobeForms does not print the barcode in the desired quality.

Especially when printing barcodes at dynamic positions of the main window (e.g. output of position data)
the barcode created by Adobe Forms frays on top and bottom. In this case, RBARC is able to print
barcodes with a dynamic positioning in a much better quality.

 With AdobeForms the barcodes cannot be parameterized exactly.

Sometimes the business partners specify exact parameters for printing a barcode. With Adobe Forms the
height can be exactly specified and it is also possible to draw the barcode narrower and wider, however,
an exact specification of the module width is not possible. With RBARC you can use the entire palette of
parameters in order to create the barcode precisely according to exact definitions.

 AdobeForms does not return the checksum.

Adobe Forms does create the barcode including the checksum but does not return the checksum to the
calling program. With RBarc+ you can print the barcode with the checksum and you can evaluate the
calculated checksum in the calling program.

8.2 Functionality of creating Barcodes in AdobeForms with RBarc+

At first the ABAP printing program or an itemized ABAP-Coding calls the interface to the RBarc+ in the
interface at the time of its initialization and transfers the value the barcode should carry together with the
barcode type. In this case, the barcode type includes the parameters for the barcode output, e.g. barcode
type (Code39, …), barcode height, module width, calculation of the checksum, etc.

RBarc+ now temporarily creates the barcode as a bitmap in the SAP graphic data base (transaction
SE78) and returns it as a binary object of the type XSTRING to the calling ABAP- program. Following
this, the temporary bitmap is deleted from the SAP graphic data base.

8.3 Embedding Barcodes into an AdobeForms Form

Any amount of barcodes can be embedded into an Adobe Forms form. The adjustments are concerning
the interface and the form only, so that existing printing programs do not have to be changed. Thus, the
RBarc+ solution is compatible for SAP updates.

To keep the form adjustments as low as possible, only the utmost necessary definitions are made.
Especially necessary is the information: „what is to be coded“? All other barcode properties such as
symbology, width, height etc. are carried out in the external ABAP program ZAF_BC_SETTINGS.

About the properties of the barcodes such as symbology, width, height etc. we will write further down in
Chapter 9 „Generating Barcodes“, as that part is identical for SAPscript, SmartForms and
AdobeForms applications. In the following, we present a listing of an AdobeForms interface and an
AdobeForms form together with the relevant explanations that will certainly enable you to embed
barcodes into AdobeForms forms with RBarc+.

The logic of the procedure is always the same and is based on the following principle:

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 45 of 74

 Creating global data types in the interface

At first, the following 3 data types have to be created in the knot „Global Definition Types“:

types: ty_content type xstring, "Barcode mit Binärdaten aus RBARC

 ty_checksum(5) type c, "Prüfziffer aus RBARC

 ty_encoding(256) type c. "Barcode in Klarschrift ohne Prüfziffer

Then, you define the global type definition for a structure.

The structure includes the following 3 fields:

a) One field including the barcode created by RBarc+ as a graphic with binary data,

b) One field including the value to be encoded in the barcode,

c) One field including the checksum calculated in RBARC.

 types: begin of ty_bc_struc,

 content type ty_content,

 checksum type ty_checksum,

 encoding type ty_encoding,

 end of ty_bc_struc.

Analogously, expanding the structure can also be carried out in the Data Dictionary, when in the
interface a structure from the Data Dictionary is used, that is completed in the super ordinate printing

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 46 of 74

program. In this case the type RAWSTRING (corresponds to the elementary ABAP data types) is used
for the field including the barcode as a graphic.

You can cal also insert the single fields into existing structures of an interface.

 Creating a global structure in an Interface

Now, you will create a global structure in the interface in knot „Global Definition Global Data“:

The global structure is of the same type of the just created structure definition.

In the example, we define a global structure BARCODE1 of the data type TY_BC_STRUC. The
global structure includes the 3 above-stated variables barcode contents, checksum and barcode
in human readable form.

 Calling RBarc+ in the Initialization of the Interface

In the knot „Initialization Coding Initialization“ of the interface, now the interface to the RBarc+

is called in order to create the barcode.

PERFORM gen_barcode(zaf_bc_settings) USING '1234567890'

 'BARCODE01'

 CHANGING barcode1-content

 barcode1-checksum

 barcode1-encoding.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 47 of 74

The interface shows 2 USING-Parameters and 3 CHANGING-Parameters that have the following
meanings:

USING-Parameter 1: The value to be encoded in the barcode.

Here, you always enter the value of the barcode to be encoded. This is
for example an order number, material number, and batch or lot
number.
In the example, a fixed value is given.

USING-Parameter 2: Barcode type with all properties and parameters created in RBarc+.

 USING-Parameter 2 includes a routine that is called in the program
ZAF_BC_SETTINGS (in this example) and includes all parameters for
the barcode, as for example the barcode type (Code39, …), the
barcode height, die module width, etc. This routine (in the example:
BARCODE01) has to be created in the called program including the
interface to RBarc+ (in the example program ZAF_BC_SETTINGS).

CHANGING-Param. 1: Barcode contents = binary object, including the barcode as a graphic.

The graphic always includes only the barcode, but not the value of the
barcode in human readable form.

CHANGING-Param. 2: Checksum calculated in RBarc+.

CHANGING-Param. 3: The value encoded in the barcode in human readable form without

 checksum.
As the barcode contents always include the graphic but never the value
of the barcode in human readable form, it is advisable to save the value
encoded in the barcode in a separate field.

 Expanding the Program ZAF_BC_SETTINGS in the SE38

In the program ZAF_BC_SETTINGS the properties of the used barcodes (such as barcode type,
barcode height, module width, etc.) are defined. Additionally, it includes the central interface to
the RBarc+, where the barcode is eventually created as a graphic.

The program ZAF_BC_SETTINGS is included in the delivery and should now already be
installed.

What now has to be done in program ZAF_BC_SETTINGS is again explained according to the
example program ZAF_BC_FORM. Final goal is to print a row of figures in the form head as a
barcode with the following properties:

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 48 of 74

Barcode type: Code 39 with checksum
Barcode height: 13mm

In the Adobe Forms interface the routine GEN_BARCODE of program ZAF_BC_SETTINGS is
called.

The variable ENCODING includes the value to be encoded in the barcode, the variable
BARC_IDENT includes a form routine, which must be called in order to create the barcode with
the parameters filed in the variables. Associated to the field BARC_IDENT is a sub program
contained in program ZAF_BC_SETTINGS that you will have to create and that you have to
supply with values.

In our example, the field BARC_IDENT includes the value BARCODE01. Through the ABAP
command

PERFORM (barc_ident) IN PROGRAM zaf_bc_settings.

the routine BARCODE01 is called, which can be found further down in program
ZAF_BC_SETTINGS.

FORM barcode01.

 symbology = '39'.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 49 of 74

 w_chksum = 'X'.

 b = 12.

 barc_high = '13'.

 unit = 'mm'.

 margin = '0.00'.

 offset = '0.00'.

 rot = 0.

ENDFORM.

The following parameters are set:

symbology = ‚39‘ Barcode of type Code128-A is created
w_checksum = ‘X’ Barcode is created with checksum
barc_high = ‚13‘ Barcode height = 13mm

All further settable parameters, please find in the RBarc+ documentation.

With routine GEN_BARC the barcode is created in RBARC.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 50 of 74

The method

CALL METHOD cl_ssf_xsf_utilities=>get_bds_graphic_as_bmp

draws the created barcode as a binary object from the graphic data base and completes the field
BC_CONTENT, which then transfers the barcode to the calling program.

In routine

PERFORM del_barc_bmp USING barc_name.

the created barcode will then be deleted.

 Expansion of the Form Context

In the Adobe Form Builder the barcodes created with RBarc+ are shown as an image object.

Therefore, the context has to be expanded by the elements necessary for a barcode.

In the form (transaction SFP) you will now move into the context and create a file.
Enter a file name and an explication. In the example, the file is called BARCODE1.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 51 of 74

Now, you will create a graphic in file BARCODE1.
Enter a graphic name and an explication. In the example, the graphic is called
BARCOD_GRAPHIC.

Now, change the graphic type to „graphic content“ and confirm the popup with „Yes“.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 52 of 74

Now, allocate the field to the graphic that contains the barcode content as a binary data stream
(in the example: BARCODE1-CONTENT) and provide it with ‚image/bmp‘ as an MIME-Type.

Subsequently, create a data field in the file BARCODE1 by pulling, with the left mouse button
pressed, the field BARCODE1-ENCODING from the interface over to the file BARCODE1. This
field then includes the barcode in human readable form.

 Expanding the layout in the Form

Now, change over to the layout view for the Form Builders.

Create an element of the type „image field“.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 53 of 74

As a data connection, provide the image field with the graphic knot defined in the context (in the
example: BARCODE1.BARCODE_GRAPHIC).

Now, create a field of the type „text field“ in human readable form for the value of the barcode
below the just created image field.

As a data connection, provide the text field with the field of that structure, containing the barcode
value in human readable form (in the example: BARCODE1.BARCODE_ENCODING).

Activate the form – you can now test it.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 54 of 74

9 The Barcode Generation

With each implementation of a barcode output, either with SAPscript, SmartForms or with AdobeForms,
the form routine GEN_BAROCDE is called up. For SAPscript, this form routine can be fond in program
ZSS_BC_SETTINGS12 and in ZSF_BC_SETTINGS12 for SmartForms. Both programs are identical
apart from the interfaces to the forms, which are laid out differently with SAPscript than with SmartForms.
For this reason, we will refer to the SETTINGS program, meaning the appropriate program relevant in
each case.

The SETTINGS program is responsible for generating the barcode requested by the form and for
returning its name to the form.

The general program procedure is always the same and proceeds according to the following scheme:

Step 1

After having started the form routine GEN_BARCODE from the form name, global settings are carried out
that determine the general characteristics of RBarc+, e.g. when errors occur.

Step 2

In the second step, the variable BARC_IDENT transferred from the form is evaluated and branched out to
the form routine that carries the same name. When you implement new barcodes, you will have to make
sure that the value for BARC_IDENT (e.g. BARCODE06) stated in the form is identical with the name of
the form routine in which the basic barcode characteristics were determined.

Step 3

As a third step, the barcode is generated by the RBarc+ routines and entered into the system. What will
be returned are the barcode name, the check digit (if the barcode was created with a check digit) and the
actually encoded value.

Step 4

At the end, the return parameters BARC_NAME (name of the barcode), CHECKSUM (check digit) and
ENCODING_RETURN (the actually encoded value) are returned to the activating form

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 55 of 74

9.1 Definition of Global Parameters for the Flow Control

Among the global parameters (as a standard valid for all barcodes to be created) are the 4 following
parameters:

Graph_type Determines the type of graphic. Standard for SAPscript is <0OTF> and for
SmartForm it is <0BMP>. As a rule, this should not be altered.

Error_handling Determines how errors are to be handled by RBarc+.

 The permitted values are:

 0 In case of an error, the program stops and displays a message
window with the relevant error message. After confirmation of the
message by the user, the program recovers the error in case it is
uncritical (for erroneous parameters such as e.g. the height, standard
values are set) so that the barcode can be created and the program
continues. Should a critical error have occurred, an error message is
generated, the program will continue but no barcode is created.

 1 Should a non-critical error occur, it is automatically recovered and
there will be no error message. In case of critical errors, an error
message will be displayed in a message window. After the user has
confirmed the message, the program continues but no barcode is
created.

 2 No error messages are shown. In case of non-critical errors, these are
automatically recovered. In case of critical errors, a black square is on
display instead of the barcode.

 The list of all critical and non-critical errors can be found on the
following page:

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 56 of 74

 Critical Errors

 Errors that cannot be recovered, e.g.:

 - Missing or invalid encoding value

- Missing or invalid symbology identification

 Non-critical Errors

 Errors that were caused by not or wrongly defined parameters (e.g.
barcode height = 0). While automatically recovering these errors, the
relevant parameters are allocated with standard values according to
the following listing:

- RES, Standard Value = 150.

- XPOS, Standard Value = 0.

- YPOS, Standard Value = 0.

- HIGH, Standard Value = 10 mm

- MARGIN, Standard Value = 0.

- OFFSET, Standard Value = 0.

- ROT, Standard Value = 0.

- UNIT, Standard Value = 'mm'

- SIGN, Standard Value = 0.

- B, Standard Value = 10,

- BB, Standard Value = 2xB,

- BBB, Standard Value = 3xB

- BBBB, Standard Value = 4xB

- W, Standard Value = B

- WW, Standard Value = 2xB

- WWW, Standard Value = 3xB

- WWWW, Standard Value = 4xB

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 57 of 74

Input_handling: Determines how the transferred encoding value should be handled.

 The permitted values are:

0 The transferred encoding value is not changed

1 Leading zeros are deleted

2 Leading spaces are deleted

3 Leading spaces and zeros are deleted

+10 Add 10 to Input_handling to delete automatically invalid characters
from the input string. Example:
Code 39, Encoding '123ä456'. 'ä' is an improper character for this
code and will usually cause en error. If you set input_handling to 10,
11, 12 or 13, the 'ä' will be filtered out and only '123456' will be
encoded.

Res Resolution of the barcode graphic. The standard value is 150 dpi. Please
make sure that the resolution defined in the SETTINGS program has to be
congruent with the resolution set in the form with graphic type BMP (no so
for SAPscript in the OTF format). If you wish to print the barcode, make sure
that the selected resolution is supported by your printing device. Most laser
printers support resolution values of 75, 150, 300 and 600 dpi. Some
printers, however, such as a number of ZEBRA printers, only support 202
dpi.

 Note: The higher the resolution, the more data are produced and the
more computing time per barcode is needed. Although the barcode
generation is usually very fast and ranges in the area of
milliseconds, this could make itself felt when printing labels with a
lot of barcodes per page.

The smaller the resolution, the more erratic the barcode width of
the entire barcode rises when changing the module width (see also
Chapter 8).

 Note: In case of laser printers, the graphic resolution can deviate from
the other printing resolutions.

The standard values for all 4 parameters were chosen in such a way that you will only have to change
them in very rare cases. As a rule, you can take over these values unaltered.

Note: Sometimes it is necessary to change one of these “global” parameters for just one barcode, e.g.
the resolution. In this case, please re-define the resolution in the form routine in which the single
barcode characteristics were determined. This setting will then be valid for that special barcode
as the processing of the barcode variables is carried out according to the global variables. Do
not, however, delete the global settings for such a parameter, as this could lead to problems in
case new barcodes need to be defined and you perhaps happen to forget to redefine such a
parameter.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 58 of 74

9.2 Definition of the Single Barcode Characteristics

The single barcode characteristics are set in a form routine whose name has to be congruent with the
value of parameter BARC_IDENT from the form. As a standard, 4 such form routines are pre-defined in
the ABAP program: BARCODE01, BARCODE02, BARCODE03 and BARCODE04. However, you can at
any time add further barcode definitions to the SETTINGS program. We will explain the single
characteristics according to the parameters that were defined in the form BARCODE03:

FORM barcode03.

 symbology = '39'.

 w_chksum = ''.

 b = 12.

 barc_high = '13'.

 unit = 'mm'.

 margin = '0.00'.

 offset = '0.00'.

 rot = 0.

ENDFORM.

SYMBOLOGY Determines with which barcode symbology the encoding is carried out.

 The permitted values are:

'2o5interl' 2 of 5 interleaved

'2o5indust' 2 of 5 industrial

'2o5matrix' 2 of 5 matrix

'2o5gp' 2 of 5 German postal bar code (11 and 13)

'39' Code 39

'39e' Code 39 extended

'39f' French postal 39 A/R

'39d' Danish 39 PTT

'93' Code 93

'93e' Code 93 extended

'codabarXY' Codabar with the relevant START and STOP character. There
are 4 START and STOP characters: „A“, „B“, „C“ and „D“. They
can be set at any random sequence. E.g. select 'codabarAC'
in order to use „A“ as a START and „C“ as a STOP character.

'128-A' Code 128 A

'128-B' Code 128 B

'128-C' Code 128 C

'E.A.N.128' Code EAN128

'128auto' Code 128 Autoswitch

'ucc-128' Code UCC-128

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 59 of 74

'128HIBC' HIBC Barcode, Single-line, based upon Code 128 for supplier
and provider label. Supplier and provider data have to be
separated by a „/“. The sign „+“ at the beginning can but does
not have to be set (in this case, it is automatically added by
RBarc+). The HIBC check digit is automatically created,
therefore must not be transferred as well.

'128HIBCP' HIBC barcode for provider label. The sign „+“ at the beginning is
added automatically. The HIBC check digit is computed
automatically.

'MSI1' MSI (without check digit)

'MSI2' MSI 10

'MSI3' MSI10+CHK10

'MSI4' MSI+CHK11+CHK10

'EAN-13' EAN/JAN 13

'EAN-13+2' EAN/JAN 13+2 (with a two-figure add-on)

'EAN-13+5' EAN/JAN 13+5 (with a five-figure add-on)

'EAN-8' EAN/JAN 8

'EAN-8+2' EAN/JAN 8+2 (with a two-figure add-on)

'EAN-8+5' EAN/JAN 8+5 (with a five-figure add-on)

'UPC-A' UPC-A

'UPC-A+2' UPC-A+2 (with a two-figure add-on)

'UPC-A+5' UPC-A+5 (with a five-figure add-on)

'UPC-E' UPC-E

'UPC-E+2' UPC-E+2 (with a two-figure add-on)

'UPC-E+5' UPC-E+5 (with a five-figure add-on)

.

W_CHKSUM Determines whether the barcode is to be created with or without a check digit. This
parameter is only evaluated in case of barcode symbologies permitting an optional check
digit. Should the barcode symbology strictly demand a check digit (e.g. Code 128), this
parameter will be ignored.

 The following barcodes permit an optional check digit:

 Code 39

 Code 39 extended

 Code 2 of 5 interleaved

 Code 2 of 5 matrix

B The so-called module width, being the width of a narrow bar. The width of other bars and
all spaces is calculated automatically. Should it be necessary, the other bars and spaces

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 60 of 74

can be defined manually. This is provided by the parameters „BB“, „BBB“, „BBBB“, „W“,
„WW“, „WWW“ and „WWWW“. According to the barcode symbology used, there are 2 or
4 different widths (see table in Chapter 8.4). Normally, they are defined in a ratio of 1:2
or 1:2:3:4.
The measurement unit is 1/720 inch. Read more about the barcode width in Chapter 8.3.

Unit Measurement unit for the barcode height (parameter BARC_HIGH), the depth of the
margin (parameter MARGIN) and the width of the margin next to the margin (parameter
OFFSET). Permitted values are „MM“ (millimeter), „CM“ (centimeter) and „INCH“.
These values can be written in small as well as in capital letters.

Margin Depth of the margin, should a HRT be wholly or partly embedded into the barcode (see
illustration further down). The measurement unit for this is determined by the parameter
UNIT.

Offset With this parameter, it is determined how wide the margin left and right of the indentation
should be (see illustration). It thus indirectly determines the width of the margin defined
with the parameter MARGIN. As the left and the right margins are equal, the indentation
of the barcode will always be embedded symmetrically.

Rot Determines whether and how the barcode is rotated. Permitted values are: 0, 90, 180 and
270 (degrees). The rotation is carried out to the right. The value here is absolute,
meaning the rotation is always carried out from 0 degrees to the right.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 61 of 74

10 More about Barcodes

10.1 Linear Barcode Types

Linear barcodes (also called 1D or one-dimensional barcodes) consist of bars and spaces that are set at
a specific ratio by a binding specification. In general, the 1D barcodes are separated into so-called 2-
Width and 4-Width barcodes.

2-Width barcodes are barcodes consisting of bars and spaces with 2 different widths. One defines a
narrow and a wide module – no matter whether it represents a bar or a space (meaning a narrow bar is
as wide as a narrow space and a wide bar is as wide as a wide space). In this case, the ratio between
narrow and wide has to lie between 1:2 and 1:3. Should the width-ratio be any different, this will – as a
rule – lead to an illegible barcode. The following barcodes supported by RBarc+ are 2-Width barcodes:

2 of 5 interleaved
2 of 5 matrix
2 of 5 industrial
2 of 5 German Postal Barcode
Code 39
Code 39 extended
Codabar
MSI

Example of a 2-Width Barcode Symbol

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 62 of 74

4-Width barcodes show bars and spaces with 4 different widths. However, also here the bars and spaces
of the same type have to be equally wide. The width-ratio has to be 1:2:3:4. The following barcodes
supported by RBarc+ are 4-Width barcodes:

Code 93
Code 93 extended
Code 128-A
Code 128-B
Code 128-C
Code 128-Auto
Code EAN-128
Code UCC-128
Code 128 HIBC
Code 128 HIBCP
Code EAN-13
Code EAN-13+2
Code EAN-13+5
Code EAN-8
Code EAN-8+2
Code EAN-8+5
Code UPC-A
Code UPC-A+2
Code UPC-A+5
Code UPC-E
Code UPC-E+2
Code UPC-E+5

Example of a 4-Width Barcode Symbol

Note: As a rule, you will only have to define the width of the narrowest bar (parameter „B“). All other
bars and spaces will be automatically computed by RBarc+. With 2-Width barcodes, the width-
ratio will be 1:2 and with 4-Width barcodes the ratio will be 1:2:3:4, and each space is
calculated in equal width as the bar of the same type. Should you wish to use a different width-
ratio for a 2-Width barcode, you have to define your own parameter „BB“. Please make sure,
however, to keep the specified ratio between 1:2 and 1:3, otherwise the barcode will be illegible.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 63 of 74

10.2 Definition of the Module Width

The module width (the width of the narrowest bar) is set by parameter „B“ in program
ZSS_BC_SETTINGS12 (for SAPscript) and with program ZSF_BC_SETTINGS12 (for SmartForms). The
measurement unit is 1/720 inch. This measurement unit is resolution-independent; therefore these
settings do not always have to be changed when you decide to change the resolution of the barcode
graphic.

10.2.1 Module Width versus Resolution.

As the module width, as mentioned in 8.2, is set in the resolution-independent unit of 1/720 inch, it is
recalculated in resolution-dependent units (pixels) during runtime. The result, therefore, will always be an
integral figure. For example, the figure 12 with a resolution of 150 dpi calculates 3 pixels for one module
and with a resolution of 300 dpi, it is 5 pixels for one module. The calculation formula is: Br = (B x
Resolution) / 720. The result up to X.5 is rounded up and from X.5 it is rounded down.

Note: Owing to the above-described facts, it is possible that the alteration of parameter „B“ is not

entirely effective on the allover width of a barcode in case of a certain resolution. If, for example,
B = 12, the result with 150 dpi is 12 * 150 / 720 = 2.5 and – rounded up – 3 pixels. Should the
value of B be increased to 15, this results in 15 * 150 / 720 = 2.9, and that still are 3 pixels,
rounded up. In case of a resolution of 300 dpi, things look entirely different, as 12 * 300 / 720 =
5 pixels and 15 * 300 / 720 = 6.25, rounded-down, that are 6 pixels. That way in case of 150 dpi,
changing parameter „B“ from 12 to 15 would have no effect on the barcode width, but with 300
dpi, there would be an effect.

10.3 Determination of the Allover Width of the Barcode

Now, we will try and find out in what way parameter „B“ should be selected if a specific barcode allover-
width is required. In this case, the procedure is as follows:

 Define parameter „B“ with a value of, for example, 10.

 Print out the barcode and measure its allover-width.

 Determine the ratio between the measured allover-width and the requested allover-width.

 Increase or decrease parameter „B“ by the calculated factor.

 Re-print the barcode.

Note: Due to the resolution and the fact that, for quality reasons, a barcode cannot simply be
stretched apart, the allover-width of the barcode erratically increases or decreases (when, for
example, a barcode consists of 50 bars and you increase parameter „B“ in such a way that the
bar is widened by 1 pixel, then the allover-width is increased by over 100 pixels, as also the
spaces increase by one pixel each and the wide modules even by 2 pixels).

Note: Should you be unable to reach the requested barcode allover-width in case of a specific

resolution, please increase the resolution of the barcode graphic (parameter „RES“). That way,
the erratic leaps will get smaller, because the higher the resolution, the smaller one pixel will be.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 64 of 74

10.4 Encodable Symbols and Input Format

Each barcode symbology possesses a so-called encodable character set. This character set includes all
characters and signs that are encodable with a certain barcode symbology. The attempt to encode a
character with a symbology not included in this character set will lead to a critical error. Therefore, please
check before implementing a barcode solution for your SAP system which characters will have to be
encoded and select the corresponding symbology. An example for such a problem would be if figures
followed by figures after the decimal comma were to be encoded with Code 39. As the decimal comma
does not belong to the character set of Code 39, a critical error will occur. A solution in this case would be
to replace the comma with a decimal point (this point belongs to the character set of Code 39), or to
select the symbology Code 39 Extended or 128-Autoswitch; their character sets also include the decimal
comma. Nevertheless, you will have to exercise special care as a symbology-change should be agreed
upon by all partners in the logistics-chain, otherwise it could lead to unpleasant surprises when, for
example, a barcode-reader used by the goods recipient cannot read the new barcode.
Some barcode symbologies also require input in a very specific format. With Code EAN-13, for example,
exactly 12 figures have to be transferred – not more and not less. If this rule is not kept, this will also lead
to a critical error. These rules you will find in the table included in the following chapter.

10.4.1 Character Set of the Barcode Symbologies Supported by RBarc+

In the following table, the character set of all barcode symbologies supported by RBarc are listed. You
will also find additional information on the symbology types and whether or not a check digit is
calculated optionally or obligatory. “YES” in the column “Check Digit” means, that the check sum is
mandatory and the parameter w_chksum will be ignored. Also at “NO” the parameter w_chksum will be
ignored, but in this case no check sum will be calculated (because not provided). The value
“OPTIONAL” means, that the parameter w_chksum will be analyzed and the check sum calculated, if it
was set to w_chksum = ‘X’.

Bar Code Name Character Set Check Digit Type Comment

2 of 5 interleaved 00 – 99 OPTION 2-Width Only pairs of figures permitted

German Postal
Identcode

11 figures fix Yes 2-Width Setup as in 2 of 5 interleaved

German Postal
Leitcode

13 figures fix Yes 2-Width Setup as in 2 of 5 interleaved

2 of 5 industrial 0-9 OPTION 2-Width

2 of 5 matrix 0-9 OPTION 2-Width

Code 39

0-9
A - Z
The sign '-' (Minus)
The sign '.' (Dot)
The space character
The sign '$'
The sign '/'
The sign '+'
The sign '%'

OPTION 2-Width

Danish PTT 39
Barcode

10 figures fix Yes 2-Width

French Postal 39
A/R

RA + 8 figures
RB + 8 figures

Yes 2-Width

Code 39 extended ASCII 0x00 – 0x7F OPTION 2-Width
Very wide, creates 2 symbols
per character, e.g. a=+A

Codabar 0-9 Yes 2-Width
4 different start and stop
characters can be defined by
the user.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 65 of 74

Bar Code Name Character Set Check Digit Type Comment

MSI 0-1 No 2-Width

MSI (Chk 10) 0-1 Yes 2-Width

MSI (Chk 10 10) 0-1 10 10 Yes 2-Width 2 Check Digits

MSI (Chk 11 10) 0-1 11 10 Yes 2-Width 2 Check Digits

Code 93

0-9
A-Z
The sign '-' (Minus)
The sign '.' (Dot)
The space character
The sign '$'
The sign '/'
The sign '+'
The sign '%'

Yes 4-Width 2 Check Digits

Code 93 extended ASCII 0x00-0x7F Yes 4-Width
2 Check Digits.
Very wide, creates 2 symbols
per character, e.g. a=+A

Code 128 A

ASCII 0x00-0x5F
FNC1
FNC2
FNC3
FNC4

Yes 4-Width

Code 128 B

ASCII 0x20-0x7E
DEL
FNC1
FNC2
FNC3
FNC4

Yes 4-Width

Code 128C 00-99 Yes 4-Width
2 Check Digits.
Very wide, creates 2 symbols
per character, e.g. a=+A

Code 128
Autoswitch

ASCII 0x00-0x7F Yes 4-Width
Changes automatically
between 128A, 128B and
128C

UCC-128 19 figures fix Yes 4-Width
FNC1 is automatically put in
after the start character

EAN128 0-9 Yes 4-Width
FNC1 is automatically put in
after the start character

EAN/JAN 8 7 figures fix Yes 4-Width

EAN/JAN 8 +2 9 figures fix Yes 4-Width with 2-Digit Add-on

EAN/JAN 8+5 12 figures fix Yes 4-Width with 5-Digit Add-on

EAN/JAN 13 12 figures fix Yes 4-Width

EAN/JAN 13 +2 14 figures fix Yes 4-Width with 2-Digit Add-on

EAN/JAN 13+5 17 figures fix Yes 4-Width with 5-Digit Add-on

UPC-A 11 figures fix Yes 4-Width

UPC-A +2 13 figures fix Yes 4-Width with 2-Digit Add-on

UPC-A+5 16 figures fix Yes 4-Width with 5-Digit Add-on

UPC-E 7 figures fix Yes 4-Width

UPC-E +2 9 figures fix Yes 4-Width with 2-Digit Add-on

UPC-E+5 12 figures fix Yes 4-Width with 5-Digit Add-on

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 66 of 74

11 Barcode Setting – A short Summary

In this chapter, you will find a summary of all parameters able to have an effect on the barcode
characteristics.

All barcode settings are run in the ABAP programs ZSS_BCSETTINGS12 (for SAPscript) and
ZSF_BC_SETTINGS (for SmartForms).

For each barcode, the barcode characteristics are integrated into one form routine. The name of the form
routine, e.g. FORM BARCODE01, has to be congruent with the value of the parameter BARC_IDENT.
The parameter BARC_IDENT is determined within the form itself.

The following parameters will have an impact on the barcode:

Symbology Barcode symbology (e.g. Code 39 or Code 128A).

W_chksum Calculation of the check digit in case of barcodes that do not necessarily demand a

check digit (e.g. Code 39).

B Width of the module in units of 1/720 inches. This indirectly determines the entire
barcode width.

Unit Measurement unit for the barcode height, for its margin and the offset.

Margin Depth of the indentation at the bottom margin of the barcode, meant for inserting the

Human Readable Text (HRT).

Offset Width of the margins, in case an indentation was defined using the parameter

“Margin”.

Rot Barcode rotation in steps of 90 degrees.

Res Resolution of the barcodegraphic.

The exact description of the parameters can be found in Chapter 7.2.

There are some further parameters that can be utilized to control the program performance in some
cases.

error_handling Determines, how the program reacts should an error occur. For example, an

automatic error recovery can be made in cases of so-called non-critical errors (e.g. a
negative margin).

Input_handling Determines the handling of the value to be encoded. As a rule, the value will be

adopted unaltered. However, with this parameter, it can be determined that, for
example, leading zeros or invalid characters must be removed before the barcode
generation.

The exact description of the parameters can be found in Chapter 7.1

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 67 of 74

12 Characteristics of the Barcode 128FREE

The RBarc barcode 128FREE is a special implementation of the Code 128 that enables the encoding of
characters that cannot be entered via the keyboard.
The Code 128 consists of 3 so-called character sets. The character set „A“ allows, for example, the
encoding of the characters with the ASCII-values 0 to 127. The characters 0 to 31, however, cannot be
entered via the keyboard. Furthermore, the Code 128 provides the special characters FNC1, FNC2,
FNC3 and FNC4 that also do not correspond to any keyboard character. Therefore, a special handling of
these characters was implemented in RBarc that enables the developer to make his own compilation of
the characters required for a Code 128. Of course, also in such a case the check digit is calculated
automatically.

The Code 128 supports the following non-displayable characters:

[NUL], [SOH], [STX], [ETX], [EOT], [ENQ], [ACK], [BEL], [BS], [HT],
[LF], [VT], [FF], [CR], [SO], [SI], [DLE], [DC1], [DC2], [DC3],
[DC4], [NAK], [SYN], [ETB], [CAN], [EM], [SUB], [ESC], [FS], [GS],
[RS], [US],
[FNC1], [FNC3], [FNC2], [FNC4],
[CODE A], [CODE B], [CODE C], [SHIFT],

For encoding all characters of a Code 128 that contains non-displayable characters the form routine
„collect_128“ is responsible. In this case, the following rules apply:

 All characters to be encoded (also displayable characters) have to be processed with this form routine.

 Displayable characters can be transferred to the form routine in inter-connected groups.

 Non-displayable characters have to be connected to the form routine in single form.

 All characters have to be typecast with the variable „DataType“: Displayable characters with ‚T‘ and
non-displayable characters with ‚F‘.

 Start characters and all possibly ensuing changes of the character set between „A“, „B“ and „C“ have to
be entered manually by the programmer.

Example:

The encoding of the following character string is to be performed (spaces and square brackets are
serving clarification purposes, only)

[START B] [FNC1] 241GA1 [FNC1] 101274 [FNC1] [CODE C] 370587

Implementation:

encoding = 'Start Code B'.
DataType = 'F'.
perform collect_128 using encoding DataType.

encoding = 'FNC1'.
DataType = 'F'.
perform collect_128 using encoding DataType.

encoding = '241G1A'.
DataType = 'T'.
perform collect_128 using encoding DataType.

encoding = 'FNC1'.
DataType = 'F'.
perform collect_128 using encoding DataType.

encoding = '101274'.
DataType = 'T'.
perform collect_128 using encoding DataType.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 68 of 74

encoding = 'FNC1'.
DataType = 'F'.
perform collect_128 using encoding DataType.

encoding = 'Code C'.
DataType = 'F'.
perform collect_128 using encoding DataType.

encoding = '370587'.
DataType = 'T'.
perform collect_128 using encoding DataType.

Should the barcode type “128FREE” be generated, the variable “encoding” can remain blank. RBarc
automatically recognizes the barcode type and does not interpret the variable „encoding“, instead it
processes the table that was used to create the form routine „collect_128“.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 69 of 74

13 The Barcode GS1-128

The RBarc barcode GS1-128 is the official successor of the barcode EAN-128.
In order to be clearly distinguished from other codes of type Code 128, he encodes the special characters
"FNC1" on the first place after the start. "FNC1" is not displayable character, however, is transmitted by
the laser scanner, so that the processing software can check whether it is indeed a GS1-128 barcode.

For the barcode GS1-128 the symbology '128GS1' was implemented in RBarc+. For this symbology the
special character 'FNC1' is always generated automatically in the first place after the START, so it may
not be explicitly specified.

According to the specification for the barcode GS1-128 fields may be separated by special characters,
such as "FNC1" or "GS1". Since these special characters can not be entered via the keyboard, a special
method was developed that allows you to encode these special characters with RBarc+.
For this reason all encoding data has to be classified passed to the form routine "collect_128GS1". A
distinction is made between two types of data: text and function code. As long as data to be encoded is
data, which can also be entered via the keyboard (which are ASCII characters from 32 dec. To 126 dec.),
they are declared as text variables. This is done with the statement DataType = 'T'. Text variables can
have arbitrary lengths. If, in contrast to characters that can not be entered using the keyboard, the
encoding data cannot be entered using the keyboard, then such data must be declared as a function
codes. This is done with the statement DataType = 'F'. Function codes(eg 'GS' may only be coded
individually, ie if two function codes should stand behind each other, then the form routine must be called
collect_128GS1 two times.

The procedure described above applies for SAPscript, Smart Forms and Interactive Forms.

Example:

The material number and the number of its units must be encoded, separated by the function code "GS"
(Group Separator).

Implementation for Smart Forms and Interactive Forms:

encoding = matnr.
datatype = 'T'.
perform perform collect_128gs1 in program zsf_bc_settings12
using encoding DataType.

encoding = 'GS'.
datatype = 'F.
perform perform collect_128gs1 in program zsf_bc_settings12
using encoding DataType.

encoding = meng.
datatype = 'T'.
perform perform collect_128gs1 in program zsf_bc_settings12
using encoding DataType.

BARC_IDENT = 'BARCODE07'.
encoding = 'dummy'.
PERFORM GEN_BARCODE IN PROGRAM ZSF_BC_SETTINGS12
USING encoding barc_ident
CHANGING barc_name checksum encoding_return.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 70 of 74

Remark:

 The code like in the example above has to be inserted into the code node of the form.

 It is assumed that matnr and meng are determined from the database.

 Since the implementation of GS1-128 is backwards compatible with earlier versions of RBarc+,
the variable "encoding" - although it is not required - has to be filled with the value 'dummy',
before it is passed to GEN_BARCODE.

 Use ZAF_BC_SETTINGS12 for Interactive Forms in place of ZSF_BC_SETTINGS12

Implementation in SAPscript:

DEFINE &ENCODING& = &MATNR&
 DEFINE &DATATYPE& = 'T'
 PERFORM COLLECT_128GS1 IN PROGRAM ZSS_BC_SETTINGS12
 USING &ENCODING&
 USING &DATATYPE&
 ENDPERFORM

 DEFINE &ENCODING& = &GS&
 DEFINE &DATATYPE& = 'F'
 PERFORM COLLECT_128GS1 IN PROGRAM ZSS_BC_SETTINGS12
 USING &ENCODING&
 USING &DATATYPE&
 ENDPERFORM

 DEFINE &ENCODING& = &MENG&
 DEFINE &DATATYPE& = 'T'
 PERFORM COLLECT_128GS1 IN PROGRAM ZSS_BC_SETTINGS12
 USING &ENCODING&
 USING &DATATYPE&
 ENDPERFORM

 DEFINE &BARC_IDENT& = 'BARCODE07'
 DEFINE &ENCODING& = 'DUMMY'
 DEFINE &XPOS& = '10.00'
 DEFINE &GRAPH_TYPE& = 'OTF'

PERFORM GEN_BARCODE IN PROGRAM ZSS_BC_SETTINGS12
 USING &BARC_IDENT&
 USING &ENCODING&
 USING &GRAPH_TYPE&
 USING &XPOS&
 CHANGING &BARC_NAME&
 CHANGING &USED_LINES&
 CHANGING &ENCODING_RETURN&
 CHANGING &CHECKSUM&
ENDPERFORM

Bemerkungen:

 The code like in the example above must be inserted into the SAPscript form.

 It is assumed that matnr and meng are determined from the database.

 Since the implementation of GS1-128 is backwards compatible with earlier versions of RBarc+,
the variable "encoding" - although it is not required - has to be filled with the value 'dummy',
before it is passed to GEN_BARCODE.

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 71 of 74

14 Index

&

&BARC_NAME& 17, 18
&CHECKSUM& 17, 19, 23, 36
&ENCODING_RETURN& 23
&GRAPH_TYPE& 17, 18
&HRT& 19
&USED_LINES& 17

1

128 HIBC 65
128 HIBCP 65
128HIBC 62

2

2 of 5 German postal bar code 61
2 of 5 German Postal Barcode 64
2 of 5 industrial 61, 64, 67
2 of 5 interleaved 61, 62, 64, 67
2 of 5 matrix 61, 62, 64
2-Width 64, 65, 67, 68

4

4-Width 64, 65, 68, 69

A

ABAP Workbanch 4
AdobeForms 4, 6, 9, 10, 13, 46, 47
Allover Width of the Barcode 66
archiving 4
Ausführbares Programm 5

B

BARC_IDENT 16, 17, 32, 33, 56, 61
BARC_NAME 17, 18, 31, 34, 35, 39, 56
Barcode Eigenschaften 46, 47
barcode graphic 14, 15, 18, 19, 28, 35, 36, 59, 66
barcode identification 14, 16, 28, 32
barcode output 4, 9, 11, 12, 56
barcode properties 14, 16, 17, 28, 32, 33, 40
BB 58, 63, 65
BBB 58, 63
BBBB 58, 63
Beispiel Formular 41
BMP 17, 18, 59
Breite 46, 47

C

changing into PDF 4
CHECKSUM 17, 19, 23, 31, 34, 36, 42, 56
Codabar 61, 64, 68
Code 128 A 61, 68
Code 128 Autoswitch 61, 68
Code 128 B 61, 68
Code 128 C 61
Code 128C 68

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 72 of 74

Code 39 61, 62, 64, 67
Code 39 extended 61, 62, 68
Code 93 61, 65, 68
Code 93 extended 61, 68
Code EAN-128 61
Code UCC-128 62
Critical Errors 58

D

Danish 39 PTT 61
DEL_BARC 18

E

EAN 67
EAN/JAN 13 69
EAN/JAN 13 +2 69
EAN/JAN 13+5 69
EAN/JAN 8 69
EAN/JAN 8 +2 69
EAN/JAN 8+5 69
EAN128 69
EAN-128 65
EAN-13 65
EAN-13' 62
EAN-13+2 65
EAN-13+2 62
EAN-13+5 62, 65
EAN-8 62, 65
EAN-8+2 62, 65
EAN-8+5 62, 65
Encodable Symbols 67
ENCODING 16, 17, 19, 31, 32, 33, 34, 36, 38, 42, 56
error_handling 70
Error_handling 57

F

faxing 4
FORM BARCODE01 70
French postal 39 A/R 61

G

GEN_BARCODE 14, 17, 28, 31, 33, 56
Graph_type 57
graphic 4, 17, 18, 28, 34, 35, 39, 57, 59

H

height 14, 16, 25, 28, 57, 58, 63
HIGH 58, 63
Höhe 47
HRT 6, 7, 8, 19, 20, 21, 22, 23, 24, 25, 26, 27, 36, 38, 39, 40, 41, 42, 43, 44, 45, 63
Human Readable Text 6, 19, 21, 24, 36, 37, 40

I

Include 5
Input Format 67
Input Parameter 39
Input_handling 59, 70
installation 4, 5, 8, 9, 10, 11, 12, 21, 40
Installation 4, 5, 8, 9, 10, 11, 12

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 73 of 74

L

Linear Barcode Types 64
Linear barcodes 64

M

mailing 4
Margin 36, 63, 70
MARGIN 27, 45, 58, 63
module width 59, 63, 66
MSI 62, 64, 68

N

nodes 28, 30, 31
Non-critical Errors 58

O

Offest 70
Offset 63
OFFSET 27, 45, 58, 63
output parameters 31, 35

P

package 5, 6, 9
Paragraph 20, 25, 37
printers 4, 35, 59
printing 4, 8, 9, 14, 40, 59
Program nodes 31

R

Res 59, 70
RES 35, 58, 66
resolution 18, 35, 59, 66
Rot 63, 70
ROT 24, 42, 58
rotated 6, 7, 8, 21, 22, 23, 25, 26, 27, 40, 41, 42, 43, 44, 45, 63

S

SAPLPD 8
SAPscript 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 28, 40, 46, 47, 56, 57, 59, 66
SAPWIN 8
SE80 5
SIGN 58
Smartforms 5, 6, 9, 12, 21, 42
SmartForms 4, 6, 7, 8, 12, 14, 28, 31, 32, 33, 35, 36, 37, 40, 41, 47, 56, 66
style 9, 36, 41, 43, 44
Symbologie 46, 47, 70
symbology 14, 28, 58, 61, 62, 63, 67

T

table 16, 28, 29, 63, 67
test forms 5
Testausdruck 13
transaction 5, 8, 9, 11, 12
Transaktion 10
TrueType Fonts 6

U

UCC-128 65, 68
Unit 63, 70
UNIT 16, 58, 63

RBarc+

©Suchy MIPS RBarc+ vers. 12 Page 74 of 74

UPC-A 62, 65, 69
UPC-A +2 69
UPC-A+2 62, 65
UPC-A+5 62, 65, 69
UPC-E 62, 65, 69
UPC-E +2 69
UPC-E+2 62, 65
UPC-E+5 62, 65, 69
USED_LINES 17

V

vertical position 20

W

W 58, 63
W_chksum 70
W_CHKSUM 62
was soll kodiert werden 46
what needs to be encoded 14
where should the barcode be positioned 14, 28
width 14, 28, 59, 63, 64, 65, 66
wo soll der Barcode positioniert werden 46
WW 58, 63
WWW 58, 63
WWWW 58, 63

X

XPOS 16, 17, 18, 58

Y

YPOS 16, 58

Z

ZAF_BC_FORM 10
ZAF_BC_INTERFACE 10
ZAF_BC_PRINT 9
ZAF_BC_SETTINGS12 6
ZBARCROT 43, 44
ZHRT180 8, 21, 40, 43
ZHRT270 8, 21, 40, 43
ZHRT90 8, 21, 25, 40, 43
ZRBARC_12 5, 6, 9
ZSF_12 5
ZSF_BC_FORM 9, 12
ZSF_BC_SETTINGS12 6, 28, 31, 32, 33, 34, 35, 36, 38, 39, 40, 42, 45, 56, 66
ZSF_BC_STIL 9
ZSS_12 5
ZSS_BC_FORM 9, 11, 12, 13
ZSS_BC_PRINT 9, 11, 13
ZSS_BC_SETTINGS12 6, 14, 16, 17, 18, 24, 27, 40, 46, 56, 66

